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The three-soliton solution of the two-dimensional Korteweg-de Vries equation is 
analysed to show that the structure of the interaction can be represented in terms of 
the motion of two-soliton resonant interactions (resonant triads) as described by Miles 
(1977). The schematic development of the interaction with time is obtained and shown 
to approximate closely to computer calculations of the analytic solution. Similar 
results follow for interactions of more solitons and other equations. 

1. Introduction 
The soliton solutions of a wide class of nonlinear equations have been extensively 

studied both analytically and numerically. More recently this work has been extended 
to motions in higher dimensions, where infinite skew solitons propagate a t  angles to 
the main propagation direction. In  particular, a study of solitary-wave interactions 
in two dimensions has been made by Miles (1977). His remarkable discovery that, in 
the interaction of two solitons, the interaction region between the incident solitons 
and the centre-shifted? solitons after interaction is essentially itself a single soliton 
leads to a, very simple conceptual picture (figure 1) of the interaction process. This 
interaction soliton is the resonant soliton associated with the two incident solitons. 
Thus if the incident solitons have wavenumbers K~ and K~ with frequencies w1 and w2, 
the resonant soliton has wavenumber K~ - K~ and frequency w2 - wl.  In  particular, 
since the dispersion relation for the two-dimensional Korteweg-de Vries equation is 
w = K~ c0s3 @ + 3~ sin2 @, where K = ( K  cos @, K sin @), this requires 

(tan @l - tan @2)2 = ( K ~  cos @l - K~ cos @J2. 

When this condition is satisfied, the centre shift of each soliton due to  the collision 
becomes infinite and only the incident solitons and the resonant soliton remain to  
form a triad (figure 2). This special solution of the equations can also be viewed as a 
fundamental entity as was the soliton itself. 

It is of some interest therefore to ask whether more complex interactions can be 
described in terms of solitons and triads. In  this paper we shall seek to explain the 
interaction of three Korteweg-de Vries solitons in this way although it is clear that 
the principles can be extended to  higher-order interactions. The main difficulty in 
such extensions is their practical description. For the case of three solitons, it  is 
comparatively simple to move in a co-ordinate system fixed with regard to the motion 

t ' Centre shift ' is often referred to in the literature as ' phase shift '. Since for more complex 
solitons the amplitude and phase are necessary for their description such a terminology becomes 
inconvenient. 
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FIGURE 1. The two-soliton interaction of Miles showing two solitons (12) and (13) interacting to 
form centre-shifted solitons (37) and (27). The resonant soliton (23) is formed in the interaction. 
The plots are in terms of the phase vmiablea T~ and T ~ .  
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FIGURE 2. The triad (123) formed when the centre shift becomes infinite. 

of two of the solitons and observe the third soliton sweeping over this, now static, 
configuration; such a procedure is not readily available for larger numbers of solitons. 
Analytically, the procedure is to group together the terms required to describe a soliton 
and a triad in the complete solution for a three-soliton interaction and assess their 
magnitude in various regions of the space and time domain. For the Korteweg-de 
Vries equabion the complete solution may be viewed as a sum of eight terms any two 
of which form a soliton and any three of which a triad. Clearly, there are a large 
number of possibilities, viz. 28 solitons and 56 triads. Not all these possibilities can, 
of course, arise and the interest lies in choosing the sequence of these combinations 
which takes the configuration from one two-soliton interaction to another as the third 
soliton sweeps across. Each of the various triad intersections is associated with a 
particular set of three terms in the solution, and each can be labelled by three indices, 
just as each soliton can be labelled by two such indices. Such a description is very 
much an ideaIization since at each interaction point the condition for resonant inter- 
action is not met as the centre shift is not infinite. The centre shift is, however, deter- 
mined by the parameters contained within the expression and by a suitable choice of 
such parameters i t  is possible numerically to approach the idealized situation. Com- 
putations have been made from the complete solution and the descriptive approach 
outlined above is vindicated in practice. Indeed, the availability of such a description 
leads to  a close scrutiny of the computer records as the minute detail of the interaction 
is easily lost if large time steps are adopted for the computation. 
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While the description given here will be confined to soliton interactions associated 
with the Korteweg-de Vries equation, the similarity of the multi-soliton solutions of 
other equations of the class typified by this nonlinear partial differential equation 
shows that similar interactions occur with solutions of these equations also. The 
authors have been concerned with soliton solutions of the so-called DaveyStewartson 
equation (Davey & Stewartson 1974; Davey & Freeman 1976; Anker & Freeman 
1977). Here the equation for soliton amplitude is similar to that for the Korteweg-de 
Vries equation but the actual soliton is itself oscillatory and a phase angle is also 
necessary for its complete description. Details of the multi-soliton solution are given 
in the appendix for this case. In  terms of amplitude alone it is shown to be almost 
identical to the Korteweg-de Vries result with a different definition for the parameters 
involved. 

2. Solution for the interaction of three solitons 
There are now many techniques available for obtaining the multi-soliton solution 

to the Korteweg-de Vries equation or, to be more accurate, its two-dimensional form 
as given by Kadomtsev & Petviashvili (1970). All such techniques rely on the equation 
having an underlying linear structure which enables the solutions to be constructed by 
inverse scattering theory. The direct approach used for many problems by Hirota, and 
for this problem by Satsuma (1976), is perhaps most convenient. In  practice, the 
solution can most easily be written in terms of the second derivative of the logarithm 
of a determinant and it is this determinant which serves best to  describe the interaction 
process. Few details of the solution procedure will be given here, but these may be 
found in the literature cited. 

The two-dimensional Korteweg-de Vries equation may be written 

(ut + ~ U U ,  + u,,,), + 3u,, = 0, (2.1) 

where the coefficients have been chosen without loss of generality to make the analysis 
more tractable. The solutions may be visualized as waves of amplitude u moving in the 
x, y plane in time t .  The suffixes denote partial derivatives. 

It is of some interest to observe that the linearized form of (2.1) has plane-wave 
solutions whose phase variable kx + my - wt satisfies the dispersion relation 

w = (k3 + 3m2/k). (2.2) 

A more convenient way to parameterize this relation is to write k = 1 + n and 

(Z+n)4+3(n2-12)2 
n+l 

m = n2-Z2, whence 
w =  = 4(P+n3). (2.3) 

This expression occurs naturally when the inverse scattering technique is employed 
(Zakharov & Shabat 1974). 

The fundamental soliton solution of (2.1) is obtained as 

u = $k2sech2$(kx+my-wt) (2.4) 

(2.5) 

with dispersion relation (2.2). With the above parameterization this becomes 

u = $ ( I  + n)2 sech $7 = 2 ??[log (1 + e-7)]/ax2, 

where 7 = - [ ( I  + n)  5 + (n2 - Z2) y - 4( l3 + n3) t ] .  
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Following Satsuma (1976), the three-soliton solution may now be computed in terms 

(2.6) 

(2.7) 

of the determinant A as 
u = 2 ayiog A)/ax2, 

A$ 
Zi + ni 

where A = I Si, + - exp [(Zi + nj) x + (nf - If) y - 4(1$ + n:) t]1, 

in which i,j = 1,2,3 and the A, are constants. It will be observed that any exponential 
factor in A the argument of which is constant or linear in x does not contribute to u. 

Expanding the determinant givest 

and 
1, + n3 1, - 1, +n, - n2 13+n, 1,-1 n n a. = (zl+n) - (z2-ll+nl-nJ 3 P =  (G) (t,--;zn;Inj* 

The nomenclature is chosen in this way so that the motion of the solitons may be 
considered in a frame of reference in which 7, and r2 are fixed with the only time 
variation occurring in a. In  fact we see that, depending on the sign of the coefficient of 
t in a, the coefficient a will range from 0 to co or 00 to 0. For a = 0, 

(2.9) A = ( -71) f exp ( -72) +e3exp { - (71 + 72)} 
(1) (2) (3)  (7)  

represents the interaction of two solitons (1  2) and ( 1  3) centred on 7, = 0 and r2 = 0 
respectively. Henceforth the solitons will be designated by number pairs giving their 
origin in the numbered terms of expression (2.8). 

For a --f 00, (2.8) becomes 

A 1 + e1exp ( - 72) +e2exp ( - 71) +%e2e3exP { - (71 + r 2 ) > ,  (2.10) 
(4) (5) ( 6 )  (8) 

ignoring the factor a exp ( - r3), which does not contribute to u. 
This represents the interaction of two solitons (45) and (46) centred on 7, = -8, 

and 7, = - 6, respectively, where ai = loge;'. The effect, therefore, of the interaction 
with the third soliton with phase variable r3 is to change the interaction from one two- 
soliton interaction to the other. Thus assuming that the coefficient oft in a is positive, 
we begin with a picture (figure 1 )  for t = - m or a = 0, with interaction of two solitons 
(12) and (13) centred on rl = 0 and r2 = 0. Schematically, as has been observed by 

The terms have been numbered to facilitate the description of the interaction later. 
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Miles (1977), this results in two centre-shifted solitons (37) and (27) after interaction 
with centres on 7, = - 6, and 7, = - 6, and a resonant soliton essentially joining the 
intersection of these two sets along 7, = 7,. The resonant soliton (23) is obtained in its 
entirety only when e, .+ 0 or n, -+ n2 and it is then described by 

After the interaction with the third soliton is complete ( t  = 00 or a = a), the picture is 
again that shown in figure 1 when, according to (2.10), the pre-interaction solitons (46) 
and (45) are centred on 7, = - S, and 7, = - 6, and the post-interaction solitons (58) 
and (68) on 7, = - (6, + 6,) and 7, = - (8, + &). The resonant soliton (56) now lies along 
the line v1 - 72 = - 8, + 6,. The whole picture has thus been translated a distance 6, in 
the 7, direction and 6, in the 7, direction. 

The following question now arises: what happens between these two limits? In  the 
next section, a qualitative picture of the interaction will be constructed. 

'23 ' + exp { - (71 - 72)}* 

3. Solutions and triads 
The asymptotic field associated with the determinant A may be calculated once CL 

and /3 are known. We shall assume for convenience that a, p, 6,, S,, 6, > 0. The far- 
field solution may be obtained as q,, 7, + * 00 and comprises the following : 

(i) Soliton (12) with A,, = 1 +exp ( -r,~,), 7, > 0, where the numbers refer to the 
terms of (2.8). A soliton centred on 7, = 0. 

(ii) Soliton (13) with A13 = 1 +exp ( -7,), 7, > 0, and centred on 7, = 0. 
(iii) Soliton (58) with A58 = m1 exp { - (ay ,  + (p + 1) 7,)} [ 1 + e2e3 exp ( - 7,)], 7, < 0, 

7, < 0. A soliton centred on 7, = - (6, + 6,). 
(iv) Soliton (68) with Ass = ~ ~ ~ e ~ p { - [ ( a + ~ ) ~ , + ~ ~ ~ ] ) [ ~ + ~ , ~ , e ~ ~ ( - ~ ~ ) ] , ~ ~  < 0, 

T~ < 0. A soliton centred on 7, = - (6, + S3). 
(v) Soliton (26) with AZs = exp ( - 7,) + ae, exp { - [(a + 1) ql +pr,l}, 71 < 0, 7, > 0. 

A soliton centred on "7, +pq2 = - ( A  +6,), where A = loga-' (assumed positive). 
(vi) Soliton (35) with = exp ( - 7,) + ae, exp { - [aq, + (,!I + 1) r2]}, 7, > 0, 7, < 0. 

A soliton centred on aql +pq2 = - ( A  +6,). 
A typical configuration is shown in figures 3 and 4. Solitons ( 1  2),  (13) and (26) are 

obviously centre-shifted solitons (58), (68) and (35) respectively. In the case 6, = 6, 
solitons (26) and (35) are the asymptotic arms of the third soliton sweeping across the 
interacting pair (12) and (13). Solitons (58) and (68) are the centre-shifted solitons 
of the final two-soliton interactions referred to in $ 2 .  For 8, # a,, the solution (2.8) 
allows a more general description in which the third soliton has different centre shifts 
at  positive and negative infinity. 

Now, prior to the third soliton sweeping across, (12) and (13) interact to give the 
centre-shifted solitons (37) and (27) respectively, and the resonant soliton (23) as 
discussed in 9 2. It is therefore the interaction of the third soliton with this configuration 
which immediately concerns us. Soliton (26) will interact with (27) to  form a resonant 
soliton (67) which combines with (26) and (27) to form the triad (267). The soliton (67) 
has the determinant 

ae 

€3 
A67 = { - (rl+ 72)} ( exp { -  r"7l-k (p- ') 721)) (3.1) 

and thus is centred along 

"71 + (p- 1) 7 2  = - ( A  +a,) +63. (3.2) 
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FIGURE 3. The sequence of events in the three-soliton interaction for 6, > 6,, 8, (6, = 2 , 6 ,  = 1, 
6, = 3, a = 3, /? = 2). The plots are in terms of the phase variables v1 and vs. 

67 37 

S 

( b )  58 35 
58 

FIGURE 4. The three-soliton interaction for 8, < a,, 6, (6, = 3, 6, = 2, 6, = 1, a = 3, B = 2). 
The plots are in terms of the phase variables 7, and 7,. 
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This soliton will interact with (68) to form a resonant; soliton (78) with determinant 

4 s  = EseXP{-(71+72)" +aslE2eXP{-((a7l+prlz)}l, (3.3) 

ay,+p7, = -(A+8,+6,). (3.4) 

which is the phase-shifted third soliton 

These three solitons form the triad (678). Again, the soliton (78) interacts with the 
solition (58) t o  produce the resonant soliton (57) with determinant 

These three solitons comprise the triad (578). 
In  turn the soliton (57) interacts with the soliton (35) to form the soliton (37), which 

brings us full circle, and the picture is complete as shown in figures 3 (a)  and 4 (a).  
The only portions of the picture which are moving in this co-ordinate system are (26), 
(67), (78), (57) and (35). 

As the motion proceeds soliton (78) reduces in length until, when it disappears, 
solitons (58) and (68) interact to form the resonant triad (568) and the resonant soliton 
(56) centred on q1 - y2 = - 8, + 8,. This soliton is also resonant with the pair (67) and 
(57) (figures 3b, 4b). The further development now depends on the respective sizes of 
S, and and S,. The case S, > S,, S, is depicted in figure 3 and S, < &,8, in figure 4. In  
the former case the triad (237) disappears before the triad (456) appears, in the latter 
the reverse occurs. 

Following the f i s t  case, solitons (67) and (57) move across until the triad (567) 
interacts with the soliton (37). Solitons (67) and (37) then form the resonant triad (367) 
with resonant soliton (36). This soliton together with (56) and (35) forms a further 
triad. This configuration is shown in figure 3 ( c ) .  Eventually the triangle diminishes to 
nothing as soliton (67) interacts with triad (237) and the arrangement becomes similar 
to  that just described with a resonant triad (236) as shown in figure 3 (d). The motion 
proceeds until the arms of the final soliton pair (46) and (45) appear (figure 3e); these 
resonate with (36) and (35) respectively to form a common soliton (34). This further 
develops until (26) and (46) resonate to  form (24), which forms a triad with (23) and 
(34) (figure 3 f ). Finally, (24) and (34) interact with (12) and (13) respectively (figure 
3g), to form the triads (124) and (134) with the common soliton (14). The original 
soliton pair interaction has now been moved laterally and longitudinally and the 
picture is the reflexion of figure 3 (a) .  

In  the second case, following figure 4(b), the development is somewhat different 
since solitons (45) and (46) appear first (figure 4c) and form the resonant triads (467) 
and (457) with common soliton (47). Now triads (467) and (237) both occur in the same 
picture. This picture is essentially reflected to form figure 4(d)  later. Then the triad 
(237) disappears and solitons (24) and (34) interact directly with (23) in the triad (234) 
(figure 4e).  

Finally, the reflexion of figure 4 (a) is established (figure 4 f )  with the interaction of 
(24) and (34) with (12) and (13) respectively as before. 
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FIQURE 5.  The case &, = 3,&, = &, = 2 ,  a = 3, p = 2. 

Figures 3 and 4 thus indicate schematically the development of the three-soliton 
interaction. Since the triad interactions are incomplete for finite values of the para- 
meters s,, s, and s,, this description necessarily represents an idealization of the true 
interaction. Calculations have been undertaken on a computer to construct the true 
picture and are shown in figure 6 for the case corresponding to figure 4. It is clear that 
the idealized picture forms a good representation of the true picture when the values 
of the parameters S,, 8, and 8, are sufficiently large and the resonant solitons are large 
enough. The computer plots indicate the maxima of the function u in the field. 

4. Computer solutions 
To verify the procedure for the calculation of multi-soliton interactions discussed 

in Q 3 i t  was decided to calculate the form of the amplitude u from (2.8) as a function 
of time in a particular case. 

In  order to make the comparison practical it was important to choose the values of 
li and mi to  give reasonable centre shifts as well as significant lengths of unmutilated 
soliton in the interaction. To do this it was necessary that the conditions were made 
close to resonance by choosing n, z n, E n3 for a three-soliton interaction. Unfortu- 
nately, this limit leads to conditions very close to  a degeneracy of the solution and the 
situations which arise are slightly different to  those already encountered in Q 3. Before 
discussing the solutions in detail therefore, it  will be necessary to digress and study the 
nature of this difference. 

Since the relative displacements of the solitons are associated with the quantities 
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4 12 13 n1 922 n a  4 4 6a a P 
-2.01 3.99 1.99 3.01-10-" 3.01+10-'6 3.01 37.4 25.6 25.5 1.67 0.476 

TABLE 1 

FIUURE 6(a).  For legend see p. 29. 

Si = loge;', it will be realized that, from the definition of ei, the value of Si will be 
determined numerically by the order of magnitude of ei or ni - nk (j + k + i).  Now, 
if the order of magnitude of n, - n3 is significantly larger than the order of magnitude 
of n2 - n3, as will be necessary if a sufficient difference in the centre shifts is required, 
then n, - n3 has an order of magnitude commensurate with n1 - n2. Thus S2 z 8,. This 
implies the near alignment of solitons (37) and (46) in figures 3 and 4, for example. 
Hence figures 3 (c), 3(d), 4(c) and 4(d) become extremely distorted. Indeed if we con- 
sider the limiting situation when S, = S, as shown in figure 5, the situation approxi- 
mates closely to the occurrence of a tetrad configuration formed by solitons (67), (37), 
(46) and (34). 

The values of the parameters chosen for the computer solutions are shown in 
table 1. It will be observed that S, and 8, are greater than S, so that the situation 
corresponds t o  the soliton orientations discussed in figure 4 and 6, is very close to 6, as 
suggested earlier. A further slight difference is that p < 1, which introduces a sequence 
between figures 4 ( b )  and (e) similar to that encountered in figure 3 between figures 3 (b)  
and (e). The parameters chosen give significant angular differences in the directions of 
t,he solitons when plotted in the physical (2, y) plane and are preferable to those used 
in figures 3 and 4 for such plots. The computer results are shown in figures 6(a)-(e), 
where the physical (2, y) orientation is used. 
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' 

FIUUKE 6@). For legend see p. 29. 

The technique employed for displaying the solitons was to choose symbols for the 
maxima of each soliton expected to  appear in the interaction and instruct the computer 
to plot these maxima of the amplitude as calculated from (2.8). The amplitudes of 
these solitons are given in table 2 together with the symbols chosen. In  practice, it  was 
necessary to specify a range of values about these maxima for each symbol. The 
tolerance on these maxima was chosen to be half the minimum difference between the 
maxima of the solitons considered, namely 0.375. A tighter tolerance might perhapsbe 
more desirable, but would have meant shorter solitons, which would have been more 
difficult to  recognize. Any values which lay outside these ranges were plotted as a star. 
The array of amplitudes calculated over the whole x, y plane was scanned in both the 
x and the y direction for maximum values and these were plotted with the appropriate 
symbol. Such a scheme has its drawbacks since it is obviously possible to obtain maxima 
associated with individual solitons within the complex interaction regions between 
solitons. Thus spurious points not associated with the solitons themselves may be 
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I 

FIQ~RE 6(c). For legend me p. 29. 

Symbol Amplitude 
D 0.25 
V 1-00 

2-25 
4.00 x 

A 6-25 
a 9.00 
X 12.25 

0 

* Denotes values outside a range of 0-375 
either side of these values. 

TABLE 2 
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FIQ- 6(d) .  For legend see p. 29. 

plotted. However, the system has the advantage that it is automatic and does not 
require any preconceived ideas about the form the interaction will take. The sequence 
of figures 6 (a)-(e) indicates that the predickd development is closely followed. The 
corresponding solitons have been labelled with two figures as in figure 4. Figure 6 (a) 
has the pentagonal form associated with figure 4 (a), while the quadrilateral form of 
figure 6 ( b )  corresponds to figure 4 (b ) .  Figures 6 (c)-(e)  are associated with the develop- 
ment depicted in figure 5 and, since /3 < 1, follow a similar development to figures 3 ( c )  
and ( d )  as mentioned above. It will, however, be observed that the solitons (34 )  and 
(67 )  tend to  dominate the soliton (36 ) ,  which is expected t o  occur in figures 6(c)-(e) .  
This is mainly due to 8, being close t o  and consequently figure 3 ( c )  not occurring. 
The further development in time corresponds to figures 4(e) and (f) ,  but since the 
computer plots associated with these are similar to figures 6 (a) and ( b )  they are not 
given. 
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FIGURE 6. Computer plots of the three-soliton interaction for 8, < a,, 8,. Physical 
co-ordinates (z,y) are used. (a)  t = -4, (6)  t = Q ,  (c) t = +, (d) t = #, ( e )  t = 2. 

5. Conclusion 
The Miles resonance phenomenon has been shown to be a characteristic feature of 

soliton interaction when three solitons are considered. It seems clear that it will 
also permit an understanding of interactions involving a larger number of solitons. 
To do this, it  becomes necessary to study the details of the algebra of the interaction 
process as a representation of the motion of the solitons in which they are denoted by 
couplets ( i . )  and triplets ( i j k ) .  It is obvious that instantaneously more than three 
solitons can come together, but in figures 3 and 4 this configuration does not persist. 
However, in the case 6, = 6, the figures become symmetrical about the (23), (56) line 
and figure 3 (d )  would indicate that a tetrad is possible. It seems reasonable to suppose 
that with suitable values of the parameters other, more exotic configurations might 
appear. To describe such interactions will prove extremely complicated, but the 
beauty of the development described above might stimulate other workers to seek a 
more complete description of this fascinating phenomenon. 



30 D. Anker and N .  C .  Freeman 

The authors are grateful to Professor A. C. Newel1 and Dr R. S. Johnson for many 
helpful discussions. One of us (D. A.) was in receipt of an S.R.C. Research Studentship 
during the period of this research. 

Appendix. The n-soliton solution for the Davey-Stewartson equation 
The basic determinantal solution for the multi-soliton solution of the Davey- 

Stewartson equation was given in Anker & Freeman (1  977). Owing to the more complex 
nature of the fundamental soliton both the phase and the amplitude are required for 
a full description. This means that for an n-soliton solution a 2n x 2n determinant is 
necessary to describe the amplitude variation. This can be written as the determinant 
of a partitioned matrix a8 follows: 

where Eij = exp {(Zi + nj)  2 + mi y - yit)/(Zi + nj) = eij/(Zi + nj) (say) and an asterisk 
denotes a complex conjugate. 

A suitable parameterization of the dispersion relation gives 

A, = iakeXP{@(8k+$k))) B k  = akexp{+i(8k-$k)) ( a k  real), 

withI, = 2sinBk,nk = 2sin8,,,8mk = 2y(~os8~+cos$~)anday ,  = 2(COS28k-cos2$k). 
Noting that lAkl = IBkl, multiplication of rows and columns by suitable factors 

then reduces A to 

0 

1 2 
with q k  = - 2(sin8k +sin 4,) 2 +' (cos 8, + co8 $ k )  y--(cos 28,- cos 2$k) t ) [ P a 

where im andj,,, denote the rows and columns of the matrices formed by taking the 
elements associated with all combinations of m main-diagonal elements. 

In  particular, for the case n = 2 we obtain 

A = 1 +al sec +(el - $J exp ( - rl) + a2 sec Q(0, - $2) exp ( - 7,) 

+ [set wl - A) sec w, - - see +(el - $,I S ~ C  t(e2 - ~ 1 1  a1a2 ~ X P  { - ( T ~  + T,)L 

a result similar to  that for the Korteweg-de Vries soliton with a resonance condition of 
the form 61 = 8, or $1 = $2.  A similar result also follows for the three-soliton case and 
hence the procedures used to  describe the interaction in this paper can be used also in 
that case. This suggests that the procedures will be available for the whole class of 
equations solvable by inverse scattering theory in the manner of Zakharov & Shabat 
(1974) for their multi-soliton solutions. 
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